// Copyright 2018 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // CPU affinity functions package unix import ( "unsafe" ) const cpuSetSize = _CPU_SETSIZE / _NCPUBITS // CPUSet represents a CPU affinity mask. type CPUSet [cpuSetSize]cpuMask func schedAffinity(trap uintptr, pid int, set *CPUSet) error { _, _, e := RawSyscall(trap, uintptr(pid), uintptr(unsafe.Sizeof(*set)), uintptr(unsafe.Pointer(set))) if e != 0 { return errnoErr(e) } return nil } // SchedGetaffinity gets the CPU affinity mask of the thread specified by pid. // If pid is 0 the calling thread is used. func SchedGetaffinity(pid int, set *CPUSet) error { return schedAffinity(SYS_SCHED_GETAFFINITY, pid, set) } // SchedSetaffinity sets the CPU affinity mask of the thread specified by pid. // If pid is 0 the calling thread is used. func SchedSetaffinity(pid int, set *CPUSet) error { return schedAffinity(SYS_SCHED_SETAFFINITY, pid, set) } // Zero clears the set s, so that it contains no CPUs. func (s *CPUSet) Zero() { for i := range s { s[i] = 0 } } func cpuBitsIndex(cpu int) int { return cpu / _NCPUBITS } func cpuBitsMask(cpu int) cpuMask { return cpuMask(1 << (uint(cpu) % _NCPUBITS)) } // Set adds cpu to the set s. func (s *CPUSet) Set(cpu int) { i := cpuBitsIndex(cpu) if i < len(s) { s[i] |= cpuBitsMask(cpu) } } // Clear removes cpu from the set s. func (s *CPUSet) Clear(cpu int) { i := cpuBitsIndex(cpu) if i < len(s) { s[i] &^= cpuBitsMask(cpu) } } // IsSet reports whether cpu is in the set s. func (s *CPUSet) IsSet(cpu int) bool { i := cpuBitsIndex(cpu) if i < len(s) { return s[i]&cpuBitsMask(cpu) != 0 } return false } // Count returns the number of CPUs in the set s. func (s *CPUSet) Count() int { c := 0 for _, b := range s { c += onesCount64(uint64(b)) } return c } // onesCount64 is a copy of Go 1.9's math/bits.OnesCount64. // Once this package can require Go 1.9, we can delete this // and update the caller to use bits.OnesCount64. func onesCount64(x uint64) int { const m0 = 0x5555555555555555 // 01010101 ... const m1 = 0x3333333333333333 // 00110011 ... const m2 = 0x0f0f0f0f0f0f0f0f // 00001111 ... const m3 = 0x00ff00ff00ff00ff // etc. const m4 = 0x0000ffff0000ffff // Implementation: Parallel summing of adjacent bits. // See "Hacker's Delight", Chap. 5: Counting Bits. // The following pattern shows the general approach: // // x = x>>1&(m0&m) + x&(m0&m) // x = x>>2&(m1&m) + x&(m1&m) // x = x>>4&(m2&m) + x&(m2&m) // x = x>>8&(m3&m) + x&(m3&m) // x = x>>16&(m4&m) + x&(m4&m) // x = x>>32&(m5&m) + x&(m5&m) // return int(x) // // Masking (& operations) can be left away when there's no // danger that a field's sum will carry over into the next // field: Since the result cannot be > 64, 8 bits is enough // and we can ignore the masks for the shifts by 8 and up. // Per "Hacker's Delight", the first line can be simplified // more, but it saves at best one instruction, so we leave // it alone for clarity. const m = 1<<64 - 1 x = x>>1&(m0&m) + x&(m0&m) x = x>>2&(m1&m) + x&(m1&m) x = (x>>4 + x) & (m2 & m) x += x >> 8 x += x >> 16 x += x >> 32 return int(x) & (1<<7 - 1) }